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Rotorcraft Flight Control Design Using CONSOL-OPTCAD

Annum Report

Gil Yudilevitch William S. Levine
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1 Introduction

This report summarizes the work that has been done on the project from April 1, 1992 to March

31, 1993. The main goal of this research is to develop a practical tool for rotorcraft control system

design based on interactive optimization tools (CONSOL-OPTCAD) as well as classical rotorcraft

design considerations (ADOCS). This approach enables the designer to combine engineering in-

tuition and experience with parametric optimization. The combination should make it possible

to produce better design faster than would be possible using either pure optimization or pure

intuition and experience.

We emphasize that the goal of this project is not to develop an algorithm. It is to develop a

tool. We want to keep the human designer in the design process so as to be able to take advantage

of his or her experience and creativity. The role of the computer is to perform the calculation

necessary to improve, and to display the performance of the nominal design.

Briefly, during the first year we have connected CONSOL-OPTCAD, an existing software

package for optimizing parameters with respect to multiple performance criteria, to a simplified

nonlinear simulation of the UH-60 rotorcraft. We have also created mathematical approximations

to the Mil-specs for rotorcraft handling qualities and input them into CONSOL-OPTCAD. Finally,

we have developed the additional software necessary to use CONSOL-OPTCAD for the design of

rotorcraft controllers.

In order to meet the specification we do not actually have to solve an optimization problem

(i.e., we are not looking for a global minimum for the cost functions). In fact, we are just looking

for a feasible solution, i.e., a solution which satisfies all the mathematical constraints (handling



qualities requirements). Using the optimization package CONSOL-OPTCAD we actually try to

solve this problem by min/maz optimization techniques [1].

If the problem, has a feasible solution, and the performance criteria are convex and smooth

(with respect to the design parameters), a solution can be found iteratively by minimizing the

maximum of the normalized (weighted) performances (min/maz). However, in complicated prob-

lems, such as design of rotorcraft flight controls, the system performance criteria are usually not

convex and not smooth. Moreover, it is not clear whether there exists a feasible solution or not.

For these cases we can still use the min/maz techniques to obtain the best possible solution (i.e.,

most of the requirements are satisfied and the rest are "almost" satisfied). In order to solve this

problem we first have to transfer the system performance criteria and constraints into smooth

functions (see Paragraph 2.2). Then we have to choose two sets of parameters. One is the initial

guess for the design parameters. The second is the performances weighting factors. Note that

right choice of these two parameter sets may increase the rate of convergence, where on the other

hand, a poor choice may cause the algorithm to diverge.

Apparently, this is an infinite choice tradeoff problem. However we can use a-priori knowledge

and engineering intuition to choose the optimization parameters wisely (e.g., use ADOCS param-

eters as the initial guess). Moreover, using CONSOL-OPTCAD allows us to change our choice at

each iteration during the design process, so using this feature one can develop a tradeoff strategy

and even an optimal design "intuition". This idea, of using mixed optimal/classical techniques

has already been used in the LQG/LTR [2], and in the symmetric root-locus [3] methods. In both

methods the optimization step ensures a certain performance level (at least stability), while the

other step allows the designer to improve the performance using classical considerations. These

methods, and hopefully our approach as well, compensate for the loss of intuition that usually

occurs when using pure optimal design techniques.

The organization of the report is as follows. In Section 2, we describe the completed parts of

the research, including the helicopter model and the handling qualities requirements. In Section

3, we discuss in detail the two major problems that we faced, and their solutions. These problems

are emphasized for two reasons. First, this information may be important for further works.

Moreover, the proposed research outline described in [4] and [5] has been changed in order to solve

these problems and others, such that we are now several months behind the original schedule. A

short description of the present status is given in Section 4. A program and schedule for future
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workaregivenin section5,the final section.

Practicallyfor thegiven specifications, one of the design goals is to ensure the internal stability

of the closed-loop system. That is, the closed-loop system matrix A in a state-space representation

of the closed-loop system is required to have all eigenvalues in the open left of the complex plane.

This problem can be formulated as a non-smooth optimization by minimizing the largest real part

of the eigenv'Mues of A. Typically, the process of minimization will tend to converge to a solution

where many eigenvalues of A have the same real part. Moreover, it may not be possible to express

the non-smooth objective function as the maximum of finitely many smooth functions and this

difficulty presents a need in theoretical research. Progress has been made along this line by our

sub-contractor at Georgia Tech. Among other things, a smooth reformulation of the problem and

an algorithm are proposed such that a quadratic rate of convergence is often achieved. A report

summarizing the results is attached in Appendix C. This algorithm will be eventually implemented

in CONSOL-OPTCAD to simultaneously address other design specifications.

2 Completed parts

2.1 A model for the UH-60 in hover

The UH-60A (Black Hawk) helicopter in hover, was chosen as a benchmark example for this

research. The comprehensive rotorcraft aerodynamic model (UM-GenHel) [6] requires much too

much computer time for one simulation run to be useful for the purposes of this research. Thus we

wrote a simplified model which can be used by the optimization package (CONSOL-OPTCAD).

The simplified model represents the helicopter linear dynamics and aerodynamics, as well as the

most important system nonlinearity (i.e., actuator saturation). The specific representation of the

helicopter in hover is, in fact, a part of the design process setup. Therefor this model has been

modified several times in order to obtain the system performance measures as well as to satisfy

some computational limitations.

The final configuration is shown in Figure 2.1, including:

(i) P(8) - Linearized UM-GenHel 11 states model (9 states for the 6 DOF fuselage dynamics and

2 states representing the rotor flapping motion).

(ii) Actuator Model - The swashplate actuators are modeled using standard saturation functions

for displacement and rate limits and a 1"t order approximation for the actuator dynamics (see



Figure 2.2). Note that the displacement saturation is implemented on the actuator command as

is standard [7].
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Figure 2.3 Detailed model of the feedforward portion of the rotorcraft controller

(iii) Delay - Pure delay which represents the overall system delay (computation delays, A/D and

D/A delays, unmodeled dynamics etc.).

(iv) H, F(s) - are ADOCS controllers. H is a constant gain, output feedback matrix. F(s) is a

decentralized feedforward dynamic controller obtained from the model following concept [8], based

on a command model dynamics M(s) and on a 1" or 2 "d order approximation for the helicopter

dynamics P,(s), see Figure 2.3. Note that if Pa(8) = P(s) then the resultant dosed-loop transfer

function is M(s).

The overall closed-loop system is controlled by the pilot using four input commands 6 =

(6¢,6#,6_, 6c) representing respectively the lateral, longitudinal, main rotor collective, and tail

rotor collective cockpit commands. The output is y = (u, v, tv, p, q, r, _p,8, Tp), which stands for the

longitudinal velocity (u), lateral velocity (v), vertical velocity (w), roll rate (p), pitch rate (q), yaw

rate (r), roll angie (_), pitch angle (8), and yaw angle (_p). The disturbance vector d = (d¢, do, d_)

allows us to simulate the helicopter angular rate changes caused by wind gusts.

In order to calculate efficiently all the desired performance measures, this model has two

different versions. There is a continuous-time linear model, for small amplitude performance,

where the actuator model A(s) is a simple 1" order model (no saturation) and the delay D(s) is a
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2'_dorderPade'approximation.Thereis also a discrete-time nonlinear model, for large amplitude

performance, where all the continuous time parts (i.e., P(8) and F(s)) are replaced by suitable

ZOH equivalents. The nonlinear simulation is implemented by solving the difference equations

recursively. For more details see MATLAB M-files, init.m and simu.m in Appendix A.

An important component of the initial task of this project was to verify the helicopter model.

The linearized reduced order UM-GenHel model (11 states) was compared with the full UM-

GenHel model (33 states) [6], and with the simplified 6 DOF model (9 states) [8]. In azldition, the

linear and the nonlinear closed-loop models were checked and compared using the "real" ADOCS

parameters (i.e., feedback gains, and feedforward parameters). For further discussion of model

verification see Paragraph 3.2.

2.2 Design specifications and their translation to mathematical functions

The following five specifications were identified as those that are essential to meet the ADS-33C

(Aeronautical Design Standard) [9]. The helicopter is considered to hover ([9], Paragraph 3.3 -

hover and low speed). The flight control system has an ACAH (Attitude Command Attitude

Hold) response type. The standard to be met is performance LEVEL 1 for all MTEs (Mission

Task Elements) excluding target acquisition and tracking for UCE (Usable Cue Environment) 2

and 3 (for detailed definitions see [9]).

These five requirements are naturally divided into two groups. The first two requirements

relate to small-amplitude response and can be checked using linear models. The remainder are

related to moderate-amplitude response and must be checked by nonlinear simulation.

In some cases the original requirements were changed slightly in order to achieve mathemat-

ical properties (i.e., smoothness) that simplify the optimization process. However, because of

saturation the smoothness property is not always guaranteed.

2.2.1 Small-Amplitude Changes, Short-Term Response to Control Inputs

This modern frequency based criterion (bandwidth/phase-delay) replaces the traditional specifica-

tions which used limits based on time-delay and rise-time. The bandwidth/phase-delay criterion

emphasizes features directly related to closure of the piloted loop, and it is a better metric than

rise-time for the prediction of handling qualities for small-amplitude precision tracking tasks. It

is clear that pilots are also sensitive to the shape of the phase curve at frequencies beyond the



bandwidth frequency. This shape is characterized by the phase-delay parameter [7]. Thus, the

level regions for the short-term response requirement are defined in the bandwidth/phase-delay

plane as shown in Figure 2.4. Actually, for small phase-delay systems this is a "pure bandwidth"

criterion. Above a certain value of phase-delay (about 0.2 sec) it becomes a traxleoff between

bandwidth and phase-delay (i.e., the pilot can tolerate higher phase-delay but then, in order to

achieve the same performance level, he needs higher bandwidth).
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Bandwidth and phase-delay are measured from a frequency response (Bode) plot of angular

attitude response to cockpit controller input. Bandwidth and phase- delay, as defined in the

specification [9], Paragraphs 3.3.2.1 (Pitch, Roll) 3.3.5.1 (Yaw), are referenced to the helicopter

with all augmentation loops closed. Thus, they can not be simply calculated from the closed-loop

design parameters. Usually, two bandwidth frequencies are measured: the frequency for 6 db gain

margin (wBWjo_), and the frequency for 45 ° of phase margin (wBWphooe). For ACAH response

types wBWphooe taken, since the nature of ACAH is such that the pilot does not have to close the

attitude loop for stabilization purposes, so the gain margin problems are less apparent. Phase-

delay is defined so that it represents all of the contribution to phase less than -180 °, and is based

on the observation that the phase curve tends to be linear.

In order to meet the LEVEL 1 (also true for other levels) requirement a two dimensional geo-

metrical measure D (normalized quadratic distance) is defined, such that minimizing this measure

implies better performance. The computation of this measure is done in three steps. First, the

graphical level curve is converted into an analytic smooth function using a polynomial curve fitting

algorithm. In order to achieve a univalent function the level curve is represented as wsw _- f(_'d),

i.e, the bandwidth frequency is a function of the phase-delay, which is a nondecreasing C °O func-

tion, Figure 2.4 d (the dotted curve). This calculation is done only once in the initialization

routine (for more details see init.m in Appendix A). The other two steps are executed in each iter-

ation. First, the bandwidth and phase-delay are computed, based on the above definitions, using

an efficient search algorithm. Second, the D measure is calculated as the minimum normalized

quadratic distance from the current (wBW, Td) point to the level curve. Moreover, measure D is

calculated only for points which are not in the LEVEL 1 region (i.e., they are to the left of the

dotted curve in Figure 2.4 d), and it is set to zero for any (wBW,l"d) point within the LEVEL 1

region. This definition makes D(wsw, r_) differentiable even on the boundary of the LEVEL 1

set (i.e., wsw = f(7"d)), and gives an identical weight for any point in the desired set (LEVEL 1

region). The computation of D uses the fact that the level curve is a nondecreasing function, so it

eliminates the need to evaluate the function wBw - f(rd) at each wBw - f(Td) (for more details

see d_bw_pd.m in Appendix A).
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2.2.2 Small-Amplitude Changes, Mid-Term Response to Control Inputs

This requirementis, in general,the complementarypart of the short-termresponserequirements

of Paragraph2.1.1. The short-termcriterion emphasizesfeaturesrelatedto the high-frequency

modes,whereasthe mid-terminfluencesmainly the low-frequency modes. Although, because of

the particular definitions of both criteria, it is unavoidable that this requirement overlaps the

short-term one. The mid-term requirement is specified for two different pilot operation modes:

"Fully Attended Operations" - where all of the helicopter tasks can be accomplished with full

pilot attention to aircraft control (e.g., other crew members handle the non-control tasks), and

"Divided Attention Operations" - where the pilot should be able to relinquish control of the

helicopter for short periods of time without encountering significant excursions. Consideration of

divided attention (as done in this research) ensures that, at least practically, any flight control

system which meets this requirement is BIBO stable. In fact a helicopter which meets the fully

attended requirement can have unstable mid-term response (as with many present-day helicopters).

For more information see [9], Paragraphs 3.3.2.2 (Pitch, Roll) 3.3.5.2 (Yaw).

The parameter that is used in this requirement is the damping ratio _. This parameter, which is

well defined for second-order systems, can be interpreted in several different ways for higher order

systems. Unfortunately, most of these interpretations lead to numerical algorithms which are either

significant time consumers, or are not smooth enough, or both. For example, computing ( as the

logarithmic decrement of the two first peaks of the system step response is very time consuming.

On the other hand, using eigenvalues, in order to find _ as the ratio between the imaginary and

the real part of the 2ndorder approximated model is, in general, not a smooth calculation. The

computer time problem becomes critical because this algorithm has to be executed in a multi-

iteration optimization process. The smoothness problem is sometimes even more critical since it

may cause failure of the optimization process.

Usually, ( defined only for stable systems. Thus practically, this requirement also implies sta-

bility. Indeed, the 2nd order approximation is based on two parameters a and b (g(s)-- _)

which completely define the system stability (i.e., a > 0, b > 0). Calculating ( from a and b

(i.e., _ = 2--_bb)implies that b must be positive (for numerical reasons, since _ is a real number).

Therefor, although it is not explicitly required, the optimization algorithm is forced to search for

a solution only for b > 0 (to avoid numerical failure this requirement is translated to a "hard

constraint', see [1]). In the future, in order to ensure stability, we will replace this constraint by

9
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the algorithm described in Appendix C. Under this constraint, and by expanding the definition

of (" to hold also for negative values, the system stability becomes a function of ¢ only (i.e., stable

for {: > O, and unstable for _ < 0).

During this work we have exa_nined two ways for cMculating _, both based on model reduction
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techniques. First, we tried to use algebraic methods such as minimal realization using both a

pole/zero cancellation method and a state elimination method. Unfortunately, these methods can

not be applied for arbitrary models (i.e., the minimal size of the reduced model depends on the size

of the full one). Thus usually they do not guarantee reduction to 2 nd order. In the current approa_:h

the 2nd order approximation is obtained by using 2 nd order system identification. In this technique

a second-order AR (auto-regressive) model is estimated using the LS (least-square) method. This

approach needs only a few time points (about 20) and the LS algorithm ensures smoothness (for

more details see zeta.m in Appendix A). Typical closed-loop, real and approximated, responses

are shown in Figure 2.5.

2.2.3 Moderate-Amplitude Attitude Changes (Attitude Quickness)

F_equency domain based criteria (e.g., bandwidth) fail in the presence of strong nonlinearities

such as saturation. Therefore, in order to check the helicopter performance during large maneu-

vers we have to define alternative criteria. Let a denote the nominal value of the angular position

(_, 0, _) for step response (i.e., a - step height), and let spk denote the peak value of the angular

velocity (p, q, r). Then, for linear systems the ratio 8pk/a is directly related to the system band-

width [7]. Using this criterion instead of one of the classical linear measures of bandwidth allows the
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Figure 2.6 Spec 3 : Quickness ratio

Level I performance is achieved if the quickness ratio is above the curve shown.
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specificationto make the requiredbandwidth a decreasingfunctionofthe sizeof the maneuver,as

shown in Figure2.6.For nonlinearsystems,especiallywith saturationnonlinearities,thisconces-

sionisessential(i.e,itisunreasonableto requirethe same "bandwidth" forallinput heights).In

thesecasesitisnot correctto interpretthisratioas a bandwidth, but itisbetterinterpretedas a

measure of agility(i.e.,"quickness"ratio).For more informationsee [9],Paragraphs 3.3.3(Pitch,

Roll)3.3.6 (Yaw).

The calculationofthequicknessratio8pk/a isverysimple.The maz(.) operatorisused overthe

sampled ratevector.Itisthen normalizedby theinput height.Note thatusingthe max(.) operator

in thiscasedoes not destroysmoothness because we try to maximize the quicknessratioand the

combination rnaz/maz issmooth. However, smoothness may not hold due to the saturation.This

testtheoreticallyhas to be checked foran infinitenumber of stepinputs.Practicallywe check it

foreach channelfor only threedifferentinputs(formore detailssee simu.m in Appendix A).

2.2.4 Interaxis Coupling

Helicopters dynamics are naturally interaxis coupled. The following requirements relate to the

two common helicopter interaxis couplings. These are the cross-coupling between pitch and roll

(i.e., pitch/roU and roll/pitch), and yaw (rate) due to collective. These couplings are caused

mostly by aerodynamic rotor moments and by the unsymmetric tail moments. Both couplings

would adversely affect the pilot's ability to complete some high maneuvers tasks. One of the most

important design objectives is to minimize these couplings (e.g., using closed-loop techniques such

as: high-gain, LQR, etc.).

The decoupling requirement is mostly significant for high-maneuver responses. Thus, it is

checked only for large amplitude step responses (The coupling measures are relative measures.

Hence, in the case of linear systems small input amplitudes can be used as well). The natural

measure is used for the cross coupling between pitch and roll (i.e., the ratio of peak off-axis

response to desired response, Opk/_deo, and Cpk/Ode, ). To avoid use of nondifferentable functions

such as maz(-) and abs(.), suitable upper and lower limits are defined to bound the response over

the relevant time interval.

For the yaw-to-collective decoupling requirement a much more involved criterion is required.

This criterion is designed to meet the pilot's needs during aggressive tasks. This criterion is a

measure of not only the magnitude, but also the shape of the yaw rate response to a step collective

12



stick input. The shape of the yaw rate is taken into account by measuring the peak yaw rate rl

and value of yaw rate after 3 seconds. In case there is no peak in the time interval [0,3] the yaw

rate at 1 second r(1) is taken instead ([9], Paragraph 3.3.9). This may cause the measure to be

not smooth with respect to the design parameters. It is clear that this can happen only if, during

the optimization process, the damping ratio ¢ of _ passes the value _ (i.e., ¢(n) < _ and

_(n + 1) > _ or vice versa, where n is the iteration number). To avoid this singularity we take

rl = r(1) regardless of the peak time (i.e., even if the peak occurs within the time interval [0,3]).

In addition to the above requirement, it is also required that the maximum oscillation amplitude,

following a step collective change is below a certain limit. From accumulated experience this limit

has to have units [7], (i.e., it is not relative as in the pitch-roll case). All the information required

for the coupling specs is taken from the largest input simulation of the quickness test (for more

details see simu.m in Appendix A).

2.2.5 Wind Gust Response

The model-following concept Mlows the designer to increase the I/O bandwidth (theoretically

unlimited) by changing the parameters of the desired model M(s) only. Actually, this is the ma-

jor a_lvantage of using a model-following control, because in most cases the designer can not achieve

(s+l)^2 _
.6

0.I

0.05

Oo 2 4 6
time [sec]

lO

Figure 2.7 Spec 5 : Wind-gust model and wave form
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the desired bandwidth due to closed-loop stability limitations (e.g., limited state feedback gains).

However, this approach has some disadvantages. One of them is that the disturbance rejection

requirement (system "stiffness") is no longer directly related to the overall system bandwidth (i.e.,

we can have a high-bandwidth, low- stiffness system). Therefore, the original wind-gust rejection

criterion ([9], Paragraph 3.2.6) is not suitable for the ADOCS configuration. A new requirement is

defined [10], by using an approximated gust model, where the gust peak value is chosen to fit the

disturbance input point (the wind-gust is applied directly to the helicopter state equations). The

wind-gust input wave form is shown in Figure 2.7, the detailed definition of the new requirement

is presented in [10].

Spe¢ 5 plane

-4

I
LEVEL 1 I Q,4

-0.4

| | * | t t i

0 5 10 15 20 25 30 35
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40

Figure 2.8 Spec 5 : Wind-gust rejection - required envelope

The wind gust response criterion is a two parameter criterion. Following precisely the require-

ments for the ACAH response type [9] leads to a pulse- input settling-time criterion. The first

parameter, settling-time t,(a) is defined by the condition that the absolute value of the response

[y(t)] _< a V t _> t,(a), where a is 10% of the response peak value. The second parameter is the

peak value itself. Practically, settling-time is obtained using a discrete-time search algorithm,

which may cause t,(a) to be not smooth with respect to the design parameters. Moreover, in order

to obtain the peak value we have to use the raaz(.) operator, and since the optimization algorithm

tries to minimize this peak it may cause some smoothness difficulties. To avoid this possibility

it is highly recommended that one uses functional constraints. Therefore, the ACAH response

14



type requirementwasslightlychangedsuchthat the amgularpositionfollowinga wind-gust input

should lie between the two curves of Figure 2.8.

Remark: This test has to be simulated for 40 seconds. Thus it becomes the biggest time consumer

of the simulation. One might think that in order to save simulation time, this test can be replaced

by a mixed time domain (for the peak) and frequency domain (for t,(a)) test. However, it turns

out that then the problem constraints cam not be functional constraints (smoothness !) and they

must be more conservative in order to guarantee the same performance level.

2.3 Optimization set-up

The computerized optimization set-up includes 3 groups of files:

(i) Optimization definitions (see Appendix B, and [1]):

• ADOCS- CONSOL-OPTCAD Problem Description File (PDF), contains definitions for the

design parameters, their initial values, and their limits (if there are any).

• SPEC#.$- Spec files where # = 1,2,3,_,5; stands for the specific spec (i.e., 1 - bandwidth vs.

phase-delay, 2 - damping ratio, etc.), and $ = pit (pitch),roi (roll), yaw; stands for the specific

controlled channel. These fies include the problem constraints (types, values, and weights). These

values can be changed at each iteration.

In the first stage of the optimization ("convert"), a_l the above files are included to one

CONSOL-OPTCAD executable file.

(ii) Model and performance (see Appendix A):

• INIT.M- Initialization file, defines the open-loop parameters (helicopter llnearized dynamics,

actuator saturations, overall time delay, wind-gust wave form, etc.). This file is executed once, at

the begining of each optimization run. The initial parameters can be changed (if required) after

each iteration.

• SIMU.M- Contains closed-loop parameters including the design parameters, and the caJculation

of the performances measures. This file is executed at each iteration.

• *.M- Series of function files, containing algorithms which have to be executed several times at

each iteration (e.g., for the discrete recursive computation).

(iii) Monitoring tools:

This group of files allows the user to monitor the optimization process at amy time, even if the

process is running in the background. These tools were developed for two reasons.
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First, the present version of CONSOL-OPTCAD has limited graphical outputs (a new version

including a strong graphical interface is currently being developed). Moreover, it is desirable to

display all the performance measures at their specific (not standard) planes, preferably in one

screen (page), as shown in Figure 2.9. This feature gives the designer the ability to see the present

performance map, at any time, just by pushing one button.

3 Major Problems

During this research we faced many problems (mathematical problems, numerical problems, tech-

nical difficulties, computer bugs, etc.). Two of these problems had substantial influence on the

research outline and rate, in particular the first one (3.1), for which we spent several months to

find the present (probably not the optimal) solution.

3.1 Simulation running time

In retrospect, we can say that this problem is a direct result of two poor choices made at the begin-

ning of this research: choosing MATLAB as the main simulation tool and the linear continuous-

time model as a starting test case. However, in this early stage, these choices seemed to be the

right ones. At the beginning, we used a simplified test case, in order to develop and to check

some of the performance measures. Then, MATLAB was a natural choice, mainly because of

its powerful linear algebra tools. Although, MATLAB is an interpreter (i.e., its code can not be

compiled to produce an executable file) the running time per one CONSOL-OPTCAD iteration

was reasonable (several minutes). However, when we started to complicate the model (i.e., adding

the saturation nonlinearity) the running time increased dramatically (more than 10 hours per one

iteration). The main source for this unacceptable simulation duration was the nonlinear simula-

tion. This was initially implemented by using numerical integration using the Runge-Kutta 4 th or

5 th order variable step size algorithm (see MATLAB M-file, ode.45.m). This method is relatively

slow, in particular in MATLAB, where it is implemented very inefficiently.

At the first step, we tried to speed up the algorithm by converting the M-file to a C MEX-file

(compiled subroutine) and by improving the original algorithm interface (see MATLAB MEX-file,

ode45m.c), but the minimum simulation time that we achieved was about 10 hours per optimization

iteration. The second step was to replace the continuous time model with a discrete time one, and
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then the numerical integration was replaced by an efficient recursive calculation. Moreover, this

change saved 8 states used for the time delay Pade' approximation (in discrete time, time delay

has a very simple implementation). Finally, after some more simplifications (e.g., reduce rotor

dynamics to a 2nd order flapping model, replace wind-gust model with its a-priori calculated wave

form, etc.), we ended with 30 - 40 minutes per iteration. During the research, we have considered

switching to an independent simulation code written in C or FORTRAN, but it now seems that

that is no longer worthwhile, because all our working environment is based on MATLAB.

This problem affected the research by consuming the time needed for solution searching. More-

over, it implies that in the next research steps, in order to get results in reasonable time, we must

use a smart computer run policy as discussed in Section 4.

3.2 A bug in UM-GenHel code

At the beginning of the model verification (August 1992), we realized that the given linearized

model gave wrong results. First, we verified that closing the loop with the real ADOCS parameters

[11] produced an unstable closed-loop system. After several months (December 1992) of testing and

comparing the linearized model and the UM-GenHel/ADOCS interfaces without any improvement

the nonlinear UM-GenHel simulation was compared with previous simulation results to find that

there was a bug in the UM-GenHel code. It is not clear why or when this bug appeared ?

However, it is clear that the wrong model was used at least in one research [12]. Finally, a new

version was installed and, after some adjustments were made (February 1993), we obtained the

present linearized model.

4 Present status

The main activity now is the tradeoff runs. We have already finished the first set of nominal

runs starting with an arbitrary initial guess, (e.g., ADOCS parameters [11]), and with a fixed

arbitrary set of constraint weights for a fixed number of iterations. However, since we chose all the

optimization parameters arbitrarily, and we did not apply any tradeoff strategy, the final solution

is an arbitrary one, and hence it is not the "optimal" one. The final and the initial performance

maps for this case are shown in Figure 2.9 and Figure 4.1 respectively.

Unfortunately, as we already mentioned, this design problem is not convex and maynot be
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Spec No. Measure Pitch Roll Yaw

1. distance (1) (2) (3)

[4] [6] [8]
2.

¢ (5) (7) (9)

.

.

.

small

medium

large

coupling

peak

t.Ca)

(10)

(11)

(12)

< 1,2>

< 7,8>

< 9,10 >

(13)

(14)

(15)

<3,4>

< 11,12 >

< 13,14 >

(16)

(17)

(18)

<5,6>

(19,20)

(21,22)

< 15, 16 >

< 17, 18 >

Table 4.1 Problem constraints

smooth everywhere. Therefore, in order to help the optimization process to converge to an accept-

able solution we must adjust the design degrees of freedom: initial guess, and constraint weights.

At the first step (currently developed) we are going to use a tradeoff strategy only for the con-

straints weights. This may give us the ability to control the local solution (the global solution

strongly depends on the initial guess). For this purpose we have a set of design DOFs, which are

the "soft constraints" shown in Table 4.1, where each (#) or < # > stands for one design DOF

(total 26). Note that (#) (or (#, #))is a CONSOL-OPTCAD "soft constraint" (or a pair of "soft

constraints"), [#] is a "hard constraint", which has no weight(i.e., it is not a design DOF), and

<# > (or < #, # >) is a "functional (soft) constraint" (or pair of "functional constraints"). For

more details see spec files in Appendix B, and [1]).

The "good values" (GV), which are exactly the spec requirements, remain fixed during the

design process and the constraints weights (CW) are directly related to the "bad values" (BV).

Practically, in the jth CONSOL-OPTCAD iteration we can change the "bad values" using the

factors/_j such that:

BVi,j = (1 - 1/_ij)av + 1//_i,jBl_j_,; i = 1,2,...,26,

which implies:
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This approach using a normMized multiplicative weighting f_tor, easily allows us to interfere

at each CONSOL-OPTCAD iteration, and "push" the Mgorithm toward the right direction.

5 Proposed work

We have completed approximately half of the tasks we originally scheduled during the first year.

The only real change to our protocol is the use of somewhat more simplified model in the design

process than was originally planned. We do not believe this will introduce any changes in the rest

of the project. Our primary goal remains the development of CONSOL-OPTCAD as a tool for

the design of control systems for advanced rotorcraft. It is very important to understand that we

are developing a tool, not an algorithm. A human designer plays the crucial role in designing the

controller. As with many sophisticated and complex tool it is not possible to simply hand our

customization of CONSOL-OPTCAD to a designer and say, "Go design a controller". There is

a great deal to learn about how to set-up the design problem and about how to force CONSOL-

OPTCAD to arrive at a good design. This is the major focus of our proposed research for the

coming year.

As last year, there are two major issues, controller structure and controller parameters. CONSOL-

OPTCAD is fundamentally a parameter optimizer. Thus, it must be given the structure of the

controller. There are several ways to do this. We will first use the ADOCS structure and op-

timize its parameters, as we had originally planned to do last year. We view this as a form of

inverse problem. That is, as a first step we will try to force CONSOL-OPTCAD to converge to

the ADOCS design. We know this is not a perfect design but it is a very useful way to learn

how the parameters with which the designer influences the design (the good and bazi values of the

mathematical versions of the specs primarily) influence both the evolution and the result of the

CONSOL-OPTCAD computations.

Once we have done this we would like to experiment with the choice of controller structures.

We will first use our intuition and conversations with various rotorcraft experts to produce some

other controller structure. We will then use CONSOL-OPTCAD to choose good parameters for

those controllers , study their sensitivity to changes in the controller parameters, and evaluate

their robustness. If time permits we would then also like to try an LQR/LTR design using the

methodology outlined outlined in the introduction.
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Weproposeto followtheschedulegiven below.

1. Design studies using the ADOCS structure (completed by August 1993)

1.1. Study performance specification tradeoffs.

1.2. Study controller sensitivity to specification.

1.3. Study controller robustness.

1.4. Solve the inverse problem - i.e., force CONSOL-OPTCAD to converge to the ADOCS

parameter values.

2. Design studies using other prespecified structures (completed by Jan. 1994)

2.1 - 2.4. Repeat the studies done for the ADOCS structure.

3. Design studies using LQR/LTR (completed by March 1994)

3.1 - 3.4. Repeat the studies clone for the previous structures.

Remark: The third task will only be clone if time permits. We believe it would be very useful

to demonstrate the possibility of combining CONSOL-OPTCAD with different optimal control

methods but it is not necessary for the success of the proposed project.
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Append_ B - Some CONSOL-OPTCAD files
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Appendix C -

Stabilization via Smooth Optimization:

Continuous-Time Case

Chin-Yee Lin Michael K.H. Fan

School of Electrical Engineering

Georgia Institute of Technology, Atlanta, GA 30332

Abstract

Let A(z) be an n x n real matrix whose elements are analytic functions of z E ]IC'_. In this

paper we consider the problem on minimizing the largest real part of the eigenvalues of A(x). This

problem is in general non-differentiable and non-convex. It is shown that an existing algorithm

proposed by Fan [2] for solving a class of smooth constrained problems can be applied here. This

algorithm enjoys the property that, if started close enough to a local minimizer x °, then it will

converge to z* quadratically. To ensure numerical stability and efficiency, our derivations employ

real Schur decomposition instead of eigenvalue decomposition of A(z). We also develop result on

the analyticity and uniqueness of the real Schur decomposition of A(x). This result may be of

interest on its own right.
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C.O

I

z T

I1 11
AT

A>O

tr( )
At

Notation

Identity matrix of appropriate size

Transpose of vector z

Euclidean norm of vector z

Transpose of matrix A

Matrix A is positive definite (A >_ 0, A < 0, and A < 0 are defined similarly)

Tra_:e of matrix A

Moore-Penrose generalized inverse of matrix A

re_l part

C.1 Introduction

Let A(z) be an n x n real matrix whose elements are analytic functions of z E ]Rm. The eigenvalues

of A(z) are denoted by Al(x),..., )_n(x), arranged in decreasing order by their real parts, i.e.,

>_...

(those eigenvalues with same real parts but different imaginary parts may be ordered arbitrarily).

Define

_(x)= max _)_(x)
i-_l,...,n

So _(z) is the largest real part of eigenvalues of A(x). In this paper, we study the optimization

problem

¢* :- min ¢(x) (1.1)

which arises in stabilization of dynamic systems. For instance, consider the nonlinear system

_(t) = A(z)zCt) + fCz, z(0), z(0) = zo (1.2)

where f(z, z(t)) denotes the second or higher order terms of the state z(t), and x is the decision

variable to be chosen in order to meet some design specifications. The system (1.2) is said to be

asymptotically stable at the origin if there exists 6 > 0 such that IIz011 < _ implies IIz(t)l ] _ 0 as

_ 0. It is well-known that (1.2) is asymptotically stable at the origin if A(x) is a stable matrix,

i.e., ¢(z) < 0. Thus, if ¢" < 0, then we could choose some z to guarantee the stability of (1.2).

The function ¢(z) is in general non-differentiable. Typically, the process of minimization tends

to make at least the real parts of eigenv_lues coalesce at the solution. Moreover, near the solution

when it is non-differentiable, it may not be possible to represent _(z) as the maximum of finitely

many differentiable functions; this type of non-differentiability usually makes the problem difficult

to solve.

The function ¢(z) in general has local minimizers which are not global. Therefore, obtaining

a global minimizer will typically require massive computation. If A(x) is symmetric and depends
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uponx affinely,then_b(x) is convex in x. In this case, among many other algorithms, a quadratically

convergent local algorithm has been proposed in [2] for solving (1.1).

In this paper, we shall only be concerned with finding a local solution of (1.1). It is shown that

the algorithm in [2] can be extended here such that, if started close enough to a local minimizer x*,

then the proposed algorithm will converge to x* quadratically. The extension involves two key steps.

First, we show that it is possible to formulate (1.1) near a local solution as a smooth constrained

problem which satisfies the hypotheses given in [2]. For this purpose, we use some results in analytic

perturbation of eigenvalues, e.g., the Puiseux series representation of repeated eigenvalues. Second,

we show how to derive first and second derivatives for some functions (which involve eigenvalues

of A(x)) to be used in the algorithm. To ensure numerical stability and efficiency, our derivation

is based on real Schur decomposition of A(x) rather than its eigenvalue decomposition. We also

developed result on the analyticity and uniqueness of real Schur decomposition of A(z). This result

may be of interest on its own right.

The paper is organized as follows. In Section C.2, we give the assumptions that will be used

throughout the paper. In Section C.3, we show the smooth formulation of (1.1). In Section C.4,

we briefly describe the algorithm proposed in [2] and discuss how it can be extended to solve

(1.1). Section C.5 is devoted to the derivatives of real Schur decomposition of A(x) as well as the

functions used in the proposed algorithm. Finally, numerical examples are given in Section C.6 to

demonstrate the proposed algorithm.

C.2 Assumptions

In this section, we give the assumptions to be used throughout the paper.

• A(z) isanalyticforallx E pro.

• There existsa localsolutionx" of (I.I).

• Suppose that

_AI(*') = ...= _Aq(x') > _Aq+1(z*)

forsome q. Then, the subsetof eigenvalues{At(x*),...,Aq(x*)}isnon-defective,i.e.,there

are q linearlyindependent eigenvectorsassociatedwith those eigenvalues.Furthermore, let

Zd denote the component matrix (see,e.g.,[5]for the definitionof the component matrix)

associatedwith Ai(x*).Then, fori= 1,...,q and ._= 1,...,m, the setof eigenvaluesofthe

matrix

z OA(,')

is non-defective.
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C.3 A smooth formulation

Let x ° denote a local solution of (1.1). Given z E IK'_, the multiplicity of _b(z) is s_id to be q

if _Al(z) - $_),q(z) > _Aq+l(x). Suppose that the multiplicity q" of _b(x*) has been correctly

identified. In this section, we give a smooth formulation of (1.1) near z*. Specifically, we define

certain functions fl(z) and f_(z), both map from 1_m to 1_, that satisfy the following properties:

(i) x* is a local solution the optimization problem

rain {fl(x) :/2(z) = O} (3.1)
xER

(ii) fl(x) and f2(x) axe twice continuously differentible at z*, and (iii) fl(z) and f2(x) satisfy the

assumptions required by the algorithm in [2] ((iii) will be checked after a recall of the algorithm in

[2]). In next section, we show how to solve (1.1) by solving (3.1) using the algorithm in [2].

Let us first proceed with an example to illustrate the main ideas in defining such fl(z) and

f2(z). Suppose that q* is 5, i.e.,

=...= >

Assume that the complex conjugate pairs {AI(x*),Aa(z*)} and {A1(z*),A2(z*)} are nonreal and

identical, and As(z*) is real. Since q* is known by assumption, z" will still be a local solution of

(1.1) even if the following constraint is imposed

_A,(x) =...= _As(x) (3.2)

Also, it is easy to check that, if restricted in the constraint set defined by (3.2), then x* is a local

minimizer of _b(z) if and only if it is a local minimizer of _=1 _Ai(x). Therefore, if we define

and

1 _A_(x)= 1 _'_ A_.(x)g g
i=l i=1

(3.3)

(3.4)
i=l

Then, we have the assertionthat z" isalsoa localsolutionof(3.1).

Now letus turn to the questionon differentiabilityof fl(x) and f2(z). The function fl(x)

definedin (3.3)is analyticat x° (seebelow). However, the function f2(x) definedin (3.4)is

not even differentiable.Roughly speaking,thisis because that the expressionin (3.4)is not

"symmetric" with respect to _A1 and _A3 or with respect to _A2 and $_A4 (since Al(x*) = As(X*)

and As(x*) = A4(x*) by assumption). To make it "symmetric", we may add a few redundant terms,

i.e., redefine f2(z) by
4 5

f_(z)= _ _ (_AdCx)- _AjCx))2 (3.5)
i=1 jfi+l
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It is easy to see that (3.4) is zero if and only if (3.5) is. However, the difference it makes is that

f_(z) defined by (3.5) is twice continuously differentiable at z °. This will be shown below.

Of course, there are many other ways to define analytic fl(z) or f_(z), besides simply multi-

plying them by constants. For example, we may define f2(z) to be the square of the right hand

side of (3.5). Or, on the right hand side of (3.5), we may use other positive even powers other than

squares. However, among all fl(z) and f_(z) that satisfy the required properties, it seems that

(3.3) together with (3.5) is the most convenient pair as it requires the least information for the

eigenvalue locations. This point shall become clear later. In fact, so far, only (3.3) together (3.5)

satisfies all the require properties.

We are now reaxiy to give the main result of this section.

Theorem $.1. Let z* denote a local solution of (1.1). Suppose that the multiplicity q" of _b(z °)

has been correctly identified. Define

1 q*
-- EAi(x) (3.6)

fl(x) = q° i=1

and
q'-I q"

f2(x) -- E E (_Xi(x) - _Xj(x)) 2 (3.7)
iffil j=i+l

Then, z ° is a local solution of (3.1). Also, at z °, fl(z) is analytic and f_(z) is twice continuously

differentiable. 1:3

C.4 Fan's algorithm

In this section, we give a brief description of Fan's algorithm. It will be used in solving (2.1). More

details about the algorithm can be found in [2].

Let x* be a local solution of (1.1). Suppose that the multiplicity q* of _b(x*) has been correctly

identified. Recall that the functions fl(x) and fz(z) defined in Section C.2 are twice continuously

differentiable at z °. Therefore, if both z - z* and h axe sufficiently small, then fi(z + h), i = 1,2,

is equal to its Taylor series expansion about x, i.e.,

fi(z +h)= fi(x)+gT(z)h+lhTHi(:r)h+O(Hhll3), i= 1,2

where gi(x) and Hi(z) are the gradient and Hessian of fi(:r), respectively. Expressions of gi(z) and

Hi(z), i = 1,2, will be given in Section C.5, where the following properties they possess can be

easily verified. (i) g2(z) = 0 if f_(z) = 0. (ii) H2(z) = H21(z) + H22(z); H21(z) and H22(x) are

symmetric; H21(x) > 0; H2z(z) = 0 if f2(z) = 0.
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Let the columns of N(z) (resp. R(z)) form an orthonormal basis for the null (resp. range)

space of H2l(z). Since H_I(x) is symmetric, we have the identity

N(x)NT(x) + R(x)RT(x)= ]

for every z in a neighborhood of z*.

It is shown that under certain regularity conditions, a local solution z" satisfies

( _vY(x')g_(x') = 0 (4.1)
Rr(x*)g2(x *) 0

which is a system of m nonlinearequations with m unknowns [2, 8]. One step of Fan'salgorithm

consists in llneaxization of the nonlinear equations (4.1) at the current point x _ and choosesthe
new point z *+1 as the solution of the obtained system of linear equations. It can be shown that the

matrices N(z) and R(x) can be chosen as smooth functions of x. It follows by standard arguments

that if started closed enough to a local minimizer x*, then it will converge to x* quadratically.

Given h E ]Rm, define D(x,h) to be the directional derivative of H21(x) in the direction h.

Also, let/_(., .) : R 'n x PCn _ R mx'n be such that D(x, h)_ = D(x, _)h for all x, h, _ E ]Rm (this

is possible since D(x, h)_ is bilineax in h and _). We now summarize Fan's algorithm as follows.

Algorithm 4.1. Let ¢,2(x) = -HJl(x)g2(x ). Define h(x) = _2(x) if N(z) is a null matrix.

Otherwise, let _l(z) = -H_l(z)gl(x ), Q(x) = tt_(x) + b(z, _(x)), and define

T -1

h(z) = d_(z)- N(z) (N (z)Q(x)N(x)) NT(x)(Q(x)d_(x) + g,(x))

Then, Znew is defined by Xnew = x + h(x). 0

C.5 Derivatives of eigenvalues

Since A(z) is analytic, it is well-known that if A(a) has all distinct eigenvalues, then the eigenvalues

of A(x), as functions of x, may be ordered in such a way that they are analytic at x = a. In this

section, we assume that A(a) has all distinct eigenwlues and derive its derivatives. The result

will be used in the next section for the derivatives of fl(z) and f2(x) (which axe required in the

proposed algorithm for solving (2.1)).

To obtain the derivatives, we may proceed with an eigenvalue decomposition of A(a), i.e., to

have a nonsingulax matrix T such that the similarity transformation T-1A(a)T is diagonal. The

advantages of being able to use a diagonal matrix instead of a full one axe obvious. However,

we choose not to do so. This is because that the matrix T may be ill-conditioned in the sense

that its inverse may be large. In this case, it is well-known that the similarity transformation

will magnify significantly any error occurred in the matrix A(a) and thus may cause numerical
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instability. Moreover,we have to carry out the computation in complex arithmetics even though

A(a) is real.

Instead, we use a real Schur decomposition of A(x), i.e., to have an orthogonal matrix U

such that the orthogonal similarity transformation S = UTA(a)U is in a certain block upper

triangular form, where the diagonal elements contain information about the eigenvalues (see below).

The matrix S will be called a real Schur form of A(a). Orthogonal similarity transformation is

particularly desirable since neither U nor its inverse U T can be large. In fact, it is easy to check

that no element of U or its inverse can be greater than one in absolute value. Also, real arithmetics

can be used throughout the computation.

However, nothing comes for free. Unlike in the case of eigenvalue decomposition, even with

the order of eigenvalues specified, the matrix S in real Schur decomposition is non-unique (in

fact, highly non-unique). In order to have the derivatives of eigenvalues using the matrices from

a real Schur decomposition, we need first address the following questions. (i) Given a real Schur

A(a)=UaSaU T (5.1)

decomposition of A(a)

is there a choice of real Schur decompositions of A(x)

= T (5.2)

such that (5.2) coincides with (5.1) at x = a, and both U(x) and S(x) are analytic at a ? (ii) If

the answer to (i) is yes, then is the choice unique ? We will show that the answer to (i) is indeed

affirmative. Also, with a mild assumption, the answer to (ii) is also affirmative. In fact, with the

same assumption, the matrix S(x) in (5.2) will be shown to have identical strictly lower triangular

part for all x in some neighborhood of a. This property enables us to compute the derivatives of

the eigenvalues using real Schur decompositions.

We continue with a review of real Schur decomposition. Although a proof of real Schur decom-

position can be easily found in many books in matrix computation, we include one here (which is

borrowed from [3]) since the proof itself is useful in our subsequent developments.

C.5.1 Real Schur decomposition

Fact 5.1. (see, e.g., [3]) Let A E _t nxn. Then there is a real orthogonal matrix U E It nxn such

that UTAU = S is block triangular with 1 x 1 and 2 × 2 blocks on its diagonal. The 1 x 1 blocks

contain the real eigenvalues of A, and the eigenvalues of the 2 × 2 blocks axe the complex eigenvalues

of A. Furthermore, the diagonal blocks may be arranged in any prescribed order.

Proof. It is algorithmic and proceeds by a sequence of reduction of similar type. Let A1,..., An

be the eigenvalues of A, arranged in any prescribed order (with complex pairs ordered together).
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Supposefirst that A1is arealwith anormalizedeigenvectorvl. Choose zl,..., z'*-i E It'* such that

{vl,zl,...,z'*-l} form a basis of It'*. Apply the Gram-Schmidt orthonormalization procedure to

this basis to produce an orthonormal basis {vx, wl,..., w'*-l} of It'*. Define U1 = [vl wl ... w,-l].

Then, UTAUI has the form

UT AUI= [ A1 * ]OA1 (5.3)

where A1 = A1 aad A1 = [wl ... w'*-l]TA[wl ... w,_-l] E It('*-l)x('*-l) with eigenvalues

A2,...,A'*. If AI = a + i3 is nonreal with nonzero eigenvector vl = p + iv. It can be shown

that /, and v are linearly independent. Choose zl,...,z'*-2 E It'* such that {p,u, zl,...,z'*-2}

form a basis of It'*. Apply the Gram-Schmidt orthonormalization procedure to this basis to pro-

duce an orthonormal basis {/_,_,wl,...,w,,-2} of It'*. Define UI = L_ a) wl ... w'*-2]. Then,

UTAU1 also has the form (5.3) where this time A1 is a 2 x 2 real matrix whose eigenvalues are

A1 and A2 (A2 = A1), and A1 - [wl -" w,,-2]TA[wl "" *0"*-2] E It('*-2)×('*-2) with eigenvalues

A3,..., A'*. Now do it over again for A1 and determine an orthogonal matrix U2 E It(,-1)×(,,-1)

such that

Define

UTAIU2 = [ A2 *]0 A2
(5.4)

Then the matrices V2 and U1V2 are orthogonal, and (U1V2)TA(U1V2) has the form

A1 * , ]
(U1V2)TA(U1V2)= 0 A2 (5.5)

0 A2

Continue this reduction to produce orthogonal matrices U/ E It('*-0×('*-0 and _ E It, x,, i =

1,..., s, where s denotes the number of eigenvalues of A with non-negative imaginary parts. Then,

the matrix U = U1V2V3" .V, is orthogonal and UTAU yields the desired form. o

It is noted that the orthogonal matrix U and the block triangular matrix S in the real Schur

decomposition are by far non-unique; we have not only the freedom in choosing the order of the

eigenvalues, but also, in each reduction step, the freedom in choosing an eigenvector and vectors

Zi'S.

In the sequel, we will denote by S'* the set of n × n matrices which are real Schur forms of

themselves, and satisfy the following properties: (i) the diagonal blocks of any element in S'* are

arranged in descending order according to the real parts of its eigenvalues (those blocks with same

38



real parts of eigenvalues may be ordered arbitrarily), and (ii) every 2 x 2 diagonal block, if any, of

S E S" has different diagonal elements, i.e., if

81

83 84

is a diagonal block of S, then sl _ s4.

By the virtue of Fact 5.1, every matrix has a real Schur form which satisfies the property (i).

This property will be shown to greatly simplify the expression for the deriwtives of f](z). On the

other hand, not every matrix has a real Schur form which satisfies the property (ii). For example,

let

[°,4 - -b

Then, A has at most two real Schur forms (itself and its transpose). In fact, it can be easily checked

that every 2 × 2 real matrix is of the form (5.6) if and only if it is a normal matrix (a real matrix

A is normal if AA T = ATA). Furthermore, if none of 2 × 2 diagonal blocks of a real Schur form of

A is normal, then it can be shown that A has a real Schur form that satisfies the property (ii).

C.5.2 Derivatives of real Schur form

We first address the anslyticity of the real Schur form.

Theorem 5.1. Suppose that A(a) has all distinct eigenvalues. Then the following statements

hold. (i) There exist analytic functions U(x) and S(x), such that U(x)S(z)UT(x) constitutes a

real Schur decomposition of A(x) in an open neighborhood of a. (ii) Let UaSaU T be a real Schur

decomposition of A(a) and assume Sa £ ,.q'. Then the functions U(z) and S(z) in (i) can be chosen

in such a way that U(a) = U,,, S(a) = S,,, and the strictly lower triangular part of S(z) is identical

in an open neighborhood of a. (iii) The choice for U(z) and S(z) in (ii) is unique.

Proof. Let U1 be given as in the proof of Fact 5.1 for the real Schur decomposition of A(a). Also

let vl and zl,..., z'-i be the corresponding choice in the first step of the reduction procedure. We

show first that, for all z in some open neighborhood of a, there exists an analytic function U1 (z) such

that Ul(a) = UI and the matrix uT(z)A(z)UI(z) has the form (5.3) or (5.4). Since all eigenvalues

of A(a) are distinct, it is well-known that the eigenvector v_(z), with vl(a) = vl, can be chosen to

be analytic at a [4]. Now, fix zl,..., z,,-1 and consider the matrix Ul(Z) in a neighborhood of a.

It is easily checked that, in a neighborhood of a, the vectors vl(z), zl,..., z'-i still form s basis

for It". Also, the Gram-Schmidt orthonormalization procedure, as a function of Vl, is analytic at

vl(a). Consequently, Ul(z) is also analytic at a (since it is s composition of two analytic functions).

Following similar arguments, it can be shown that U(x) and S(z) = UT(z)A(z)U(z) may be chosen

to have the desired property in the first claim.
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To show the second claim, without loss of generality, we may assume that A(z) is a 2 x 2 matrix

with nonreal eigenvalues (so it is already in a real Schur form). Let

L,_(:_),_.,(x)j

In view of the assumption, we have al(a) _ a4(a). Let

t(_): _/(.,(x) - .,,(:,:))_+ (a_(x)+ a_(_))_

Then, it is tedious but straightforward to check that

1 ( 2a3(a)-a3(x)-I-a2(x) a4(x)-al(x)_0. = _ sin-' tOO - cos-' _ /

and the orthogonal matrix

are all analytic at a, and

U(x)=[cosOx -sin0x ]sin 0_ cos 0z

UT(x)A(x)U(x) = S(x) = [ *a3(a) ** ]

The proof for the third claim will given at the end of this section, o

Lemma 5.1. Let S E So and B E p nxn. Assume that S has all distinct eigenvalues. Then, among

all skew-symmetric matrices in 1_"xn, there exists a unique P such that pTs + SP + B is upper

triangular.

Proof. We show the claim by a recursive construction. Let el,...,en denote the standard basis

vectors in IR". For i = 1,...,n- 1, define Ei = [ei+l "" en] E p,x(_-i), Pi = Erpei E It n-i, and

Si = ETSEi E 1_(_-0x(n-0. Thus, any skew-symmetric matrix P is uniquely determined by the

vectors Pl,.-.,Pn-1. Suppose that Pl,..., pk-1 have been obtained for some k. We then show how

to proceed. Let S = {s/j}. First, let us assume sk,k-1 = sk+l,k = 0 (so, skk is an eigenvalue of S).

Since pTs + SP + B is upper triangular, we have

which is equivalent to

E T (prs + SP + B)ek =0

k-1

- _ sikE_Prei - (skkl -- Sk)pk + ETBek = 0
i=1

Thus, pk can be solved and is equal to

j,_: (s_i- s_)-_ - _ s,kE_p_e,+ E_Be_
i=l

(5.7)
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Notice that the right hand side of (5.8) does not depend upon pk,...,p_-l. Also, since S has

distinct eigenvalues by assumption, the matrix skkl -- Sk in (5.7) is invertible.

Second, we assume s_-1,/, = 0 and sk+l,k # O. Again, since pTs + SP + B is upper triangular,

we have

ELl (PTS + SP + ek+l = 0

which is equivalent to

or

where

- _=11,ikETprei- (skkl-- Sk)pk -- *k+l,kETpTek+l + ETBek = 0
t-IT,__*i,k+l ET+IpTei (sk+l,k+lI-- Sk+l)Pk+l 8k,k+lET+,pTek + ET+IBek+I 0

= _-1

k-1

- i=1_' sikETpTe_ + ETBe_ ]k-1 ET+I pTei + ET+I Bek+l-- _[_ 81,k+l

(5.8)

lcllc f' "i...o_= 0

skk Sk+l,k e(--Sk+l)
0 [Sk,k+l 8k+l,k+l

c_ = skk --sk+l,k+i, and $ denotes the Kronecker sum. Again, it is easy to check that the right hand

side of (5.8) does not depend upon pk+2,..., p,_. Also, in view of the definition of S,_ (which implies

cl = akk -- 8_+1,k+1 # 0), the assumption that S has distinct eigenvalues, and the eigenvalues of

Kronecker sum of two matrices, we conclude that _ is invertible. Finally, the uniqueness of P is

obvious from the construction, o

In the sequel, given S E S,, with distinct eigenvalues and B E _nxn, we will denote by

e = ,4(s, B) (5.9)

the unique skew-symmetric matrix P that constructed by the recursive procedure given in the proof

of Lemma 5.1. Using (5.9), we show below how to derive the first and second order derivatives of

the real Schur form.

Theorem 6.2. Suppose that A(z) is analytic at a E _m and A(a) has all distinct eigenvalues. Let

U(a)S(a)UT(a) be a real Schur decomposition of l(a) and assume S(a) e So. Let U(x) and S(z) be

some analytic functions given in Theorem 5.1 (ii). For i,j = 1,..., m, define Bi = UT(a)_U(a)

and P/= A(S(a),Bi). Then, for i = 1,...,m, it holds that

OS(a) _ piTS(a ) + S(a)P_ + Bi
Oxi
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Furthermore,for i,j = 1,..., m, define

B,j = PT°sC")+ os(.) r O_AO,)Ozi -_zi Pj + PT Bj + BjP, + U (a)_U(a)

and PO = .,4(S(a),Bij). Then, for i,j = 1,...,m, it holds that

aSS(a) = P_S(a) + S(a)P 0 + B 0
Oz_Ozj

Proof. For i - 1, ..., m, let _ = U(x)Pi(z) for some Pi(x) E It '*x". It is clear that Pi(x) is also

analytic. Differentiating the identity uT(z)U(x) = I with respect to z_ yields

e[(,)+ P,(,)= o

i.e., Pi(x) is skew-symmetric for all x. Also, differentiating the identity S(x) = UT(x)A(x)U(x)

with respect to xi at a yields

aS(a) _ pS(a)S(a)+ S(a)P,(a)+ B,
Oxi

By the property (ii) concerning S(x) in Theorem 5.1, we have that _=_ is an upper triangular

matrix. In view of Lemma 5.1, P_(a) is unique and equal to P_(a) = .A(S(a), B_). This proves

the first claim. The second claim follows similar arguments. Since Pi(x) is skew-symmetric for all

have that _ is also skew-symmetric for all x. Then it is straightforward to check thatx, we

differentiating the identity S(x) = uT(x)A(x)U(x) twice at a yields

°:so) - P,rO)s(_) + S(a)P,j+ B,j
Oz_Ozj

where Pij(a) = oPda) Again, in view of Lemma 5.1, Po(a) is unique and equal to Pij(a) =
8zj "

.A(S(a), Bij). This completes the proof, o

We now turn to the uniqueness question about the real Schur form S(x) of A(x) given in

Theorem 5.1 (iii). /,From the proof of Theorem 5.2, it is seen that the first and second order

derivatives of S(x) at a are uniquely defined by S(a), U(a) and the derivative at A(x) at a. In

fa_t, this result holds for higher order derivatives of S(x) as well. Therefore, given two choices of

analytic functions {U(x),S(x)} and {U(x),S(x)} in Theorem 5.1 (ii), it holds that S(a) = S(a)

and all derivatives of S(x) and S(z) at a coincide with each other. Thus, we must have S(x) = S(x)

for all z. By the same argument, we can conclude also that U(x) = br(x) for MIx. This proves the

third claim of Theorem 5.1.
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C.5.3 Derivatives of eigenvalues

Usingthe results on the derivatives of real Schur form, we are now ready to give the derivatives of

the eigenvalues.

Theorem 5.3. Suppose that A(a) has all distinct eigenvalues. Let U(a)S(a)UT(a) be a real Schur

decomposition of A(a) and assume S(a) E _q,. Also, let U(z) and S(z) be the unique analytic

function given in Theorem 5.1 (ii) and (iii). Then, the first and second order derivatives of the

eigenvalues of A(z) at a can be computed as follows. If A(a) is a real eigenvalue of A(a), i.e., )_(a)

is a diagonal element of S(a), say, s(a), then

o_(_) o_(_) o2_(_) o2_(_)
Oz'-----_= Oz----j'" and OziOzj - OziOzj for i,j = 1,...,m

Now, suppos e that A(a) is a nonreal eigenvalue of A(a) with positive imaginary part, i.e., A(a) is

an eigenvalue of a 2 x 2 diagonal block of S(a), say,

Define

_,(a) _2(a) ] (5.10)

_k) a_k(_) ;!_1 o:_(_) _ 1- _ , - _, _ = _(a)_ _(_)

and Yl = (sl(a) - 84(a)) (7_ 1)- 3,_4)) + 2 s3(a) 7_21. Then, for/,j = 1,...,m, we have

Ozi

OziOxj -

1 (7_11 + 7_4)+ yl r)2

21( 7!1)+ 7!41 - Y' yj r3 -_ 2 83(a)7_j 21 ?" -F (7_ 11- 7_41) (7_ 1)- 7_4)) r)

Proof. The result is obvious when A(a) is real. When A(a) is nonreal, one can first find its analytic

expression in terms of the elements of the matrix in (5.10), and then apply the chain rule for its

derivatives. []

C.5.4 Derivatives of fl(z) and f2(z)

In this section, we give the expressions for various quantities that needed in Algorithm 4.1. They

can be easily obtained by using the preceding results and the chain rule. Here, given a vector t, we

denote by (t)_ its i-th element, and given a matrix T, we denote by (T)ij its ij-th element. Also, to
q-1 q q

simplify the notation, we denote _ _ by _':_.
k----1/=k+l k,I
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al(_)

H_(_)

1 q

-- --Etk

q k=l

1 q
- -_Tk

k=l

q

k,!

H21(X) + H22(x)

D(z,h)

H_,(_) =

H22(x) =

(tk)i =

(Tk)_j =

q

((T_- T,)hCt_- t,)T+ (t_ - _,)h_cr_- T,))
k,I

q

k,l

q

_(tk -- tt)(tk -- tl) T
k,I

q

_(_k(_) - _Xt(_))CT_- T_)
k,I

Ozi

C.6 A numerical example

The proposed algorithm has been implemented in Matlab [6]. In this section, we present a simple

example to illustrate its convergence property. The example is to minimize over IR2 the largest real

part of the eigenvalues of A(x), where A(x) is defined by

A(x) = Ao + xiAz + zzA2 + XlX2A3 + x_A4 + x]As

and the matrices Ai, i = 0,..., 5 are given as follows.

A0 --

0.2 1.0 -0.2 0.0 -6.6]
0.7 -3.1 -1.5 5.3 -1.5

-1.4 2.8 4.6 0.9 -6.3

3.6 5.8 -3.9 3.0 -8,0

0.3 9.1 -3.2 2.0 1.7

A1

4.1 7.2 5.7 -3.5 -6.4

-2.3 7.2 5.1 -1.0 -4.2

0.8 1.9 -6.4 -4.6 -0.3

2.8 7.4 -0.7 0.6 -3.2

-8.4 7.1 -1.3 -1.9 1.4
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A2 -

4.4 2.3 -1.1 6.6 7.8

-4.6 9.2 -6.7 -1.8 5.9

-3.1 0.2 11. -8.0 -7.0

-3.6 -2.8 -4.2 13. 2.7

3.1 -2.6 4.3 0.9 10.

A3 -

-9.4 -3.5 1.5 -1.5 -4.8

-1.6 -0.9 0.4 0.8 0.8

-2.1 0.5 -3.8 -3.6 5.8

7.7 2.3 3.7 -6.6 -2.7

-4.9 0.3 2.5 2.0 -1.5

A4 _--

-3.8 6.2 -0.3 -5.8 -7.1

-7.5 0.2 3.9 -4.7 3.1

-0.4 -0.7 -3.7 -0.1 -1.8

-2.4 -4.2 2.4 6.9 -0.3

-0.2 -5.5 0.3 5.7 8.4

A5 ---

15. -0.0 -4.2 -3.8 0.6

5.8 12. 2.8 -3.6 4.5

5.3 -1.1 9.4 5.0 4.6

-9.7 4.4 4.2 13. 0.I

4.8 -3.7 -8.9 6.7 15.

A local solution is

[0.14867145915551]z* = -0.38655872292658

which is obtained by trial and error. The corresponding eigenvalues of A(z) at z" are

;xs(x')

3.96924962356182

3.96924962356182

3.96924962356181

-1.78038425406443

-i0.02592118139874

+ i 7.73645446194478

- i 7.73645446194478

Thus, the multiplicity of _b(z') is 3. Some level curves of q_(z) around z* are given in Figure 6.1 (z °

is located at the center of the figure). Also, in Figure 6.2, solid lines are the level curves of fl(x)

and the dotted line is the feasible set {z : f2(x) - 0).

We set q = 3 and choose the starting point x = 0 in running Algorithm 4.1. In order to

ensure convergence in a larger neighborhood around x*, we perform line search along h(x k) at each

iteration. We choose Ik to be the smallest integer in (0, 1,2,...} such that z k+l defined by

zk+'= z k + (0.5) tk h(z k)

strictly decreases the objective function, i.e., _b(z k+l) < _b(zk). The test result is summarized in

Table 6.1. In Table 6.1, the second column is the largest real part of the eigenvalues of A(zk); the

third and fourth columns together is the optimality condition for a local minimizer (both values

are zero at the minimizer); and the last column is the distance between x k and the local minimizer

z*. The integer lk used line search is one for the first iteration and zero for the rest. The result

shows that the rate of convergence is indeed quadratic.
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Figure6.1.Levelcurvesof_(z).

0

Figure6.2.Solidlinesare levelcrvesof fl(z) and the dottedlineisthe set {z :fa(z)-_0).
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Iter k _(z k) f2(z k) II T(xk)gl(Xk)ll IIzk- x'll

0 6.960 2.6e+01 2.4e+01 4.1e-O1

1 5.945 5.9e+01 9.9e-01 2.6e-01

2 5.754 7.9e+01 4.8e+00 1.3e-01

3 4.515 2.1e+00 5.2e+00 1.2e-01

4 4.000 2.2e-02 3.8e-02 3.0e-03

5 3.96958 2.5e-06 1.1e-03 2.7e-05

6 3.969249645 1. le- 14 1.4e-08 2.3e-09

7 3.96924962356182 7.9e-31 1.2e-14 1.0e-15

Table 6.1
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